How to evaluate:
$$\int_{-\infty }^{\infty } \frac{\sin^2x}{x^2} \, dx$$
This is a problem in my complex variables course. This integral is intended to be solved by contour, but I’m struggling with it. Thanks for anyone can give me some hints!
How to evaluate:
$$\int_{-\infty }^{\infty } \frac{\sin^2x}{x^2} \, dx$$
This is a problem in my complex variables course. This integral is intended to be solved by contour, but I’m struggling with it. Thanks for anyone can give me some hints!
Well, we can write:
$$\mathscr{I}_{\space\text{n}}:=\int_{-\infty}^\infty\frac{\sin^2\left(\text{n}\cdot x\right)}{x^2}\space\text{d}x=2\cdot\int_0^\infty\frac{\sin^2\left(\text{n}\cdot x\right)}{x^2}\space\text{d}x\tag1$$
Because it is an even function.
Using Laplace transform, we can write:
$$\mathcal{I}_{\space\text{n}}\left(\text{s}\right):=\mathscr{L}_x\left[\frac{1}{x}\cdot\frac{\sin^2\left(\text{n}\cdot x\right)}{x}\right]_{\left(\text{s}\right)}=\int_\text{s}^\infty\mathscr{L}_x\left[\frac{\sin^2\left(\text{n}\cdot x\right)}{x}\right]_{\left(\sigma\right)}\space\text{d}\sigma=$$ $$\int_\text{s}^\infty\int_\sigma^\infty\mathscr{L}_x\left[\sin^2\left(\text{n}\cdot x\right)\right]_{\left(\theta\right)}\space\text{d}\theta\space\text{d}\sigma=\int_\text{s}^\infty\int_\sigma^\infty\mathscr{L}_x\left[\frac{1-\cos\left(2x\right)}{2}\right]_{\left(\theta\right)}\space\text{d}\theta\space\text{d}\sigma=$$ $$\frac{1}{2}\cdot\int_\text{s}^\infty\int_\sigma^\infty\left(\mathscr{L}_x\left[1\right]_{\left(\theta\right)}-\mathscr{L}_x\left[\cos\left(2x\right)\right]_{\left(\theta\right)}\right)\space\text{d}\theta\space\text{d}\sigma=$$ $$\frac{1}{2}\cdot\int_\text{s}^\infty\int_\sigma^\infty\left(\frac{1}{\theta}-\frac{\theta}{4+\theta^2}\right)\space\text{d}\theta\space\text{d}\sigma\tag2$$
Where I used the frequency-domain integration property of the Laplace transform.
Now, when $\Im\left(\sigma\right)\ne0\space\vee\space\Re\left(\sigma\right)>0$:
$$\mathcal{I}_{\space\text{n}}\left(\text{s}\right)=\frac{1}{2}\cdot\int_\text{s}^\infty\frac{1}{2}\cdot\left(\ln\left|4+\sigma^2\right|-2\ln\left|\sigma\right|\right)\space\text{d}\sigma=\frac{1}{4}\cdot\int_\text{s}^\infty\left(\ln\left|4+\sigma^2\right|-2\ln\left|\sigma\right|\right)\space\text{d}\sigma\tag3$$