Let $$a_n=\frac{1^k+2^k+3^k+...+n^k}{n^{k+1}}$$
I need to find $$\lim _{n\to \infty }\left(a_n\right)$$
I know that $a_n=\frac{1^k+2^k+3^k+...+n^k}{n^{k+1}}=\frac{1}{n}\left(\frac{1^k}{n^k}+\frac{2^k}{n^k}+\frac{3^k}{n^k}+...+\frac{n^k}{n^k}\right)=\sum _{i=1}^n\:\frac{i^k}{n^k}\cdot \frac{1}{n}$
how can i continue from here ?
thanks