Show that it’s provable in the Hilbert system that identity behaves as an equivalence relation, i.e., show that for any terms $t_1, t_2$, and $t_3$ the following hold.
(a) $\vdash_H t_1 \approx t_1$
(b) $\vdash_H t_1 \approx t_2 \rightarrow t_2 \approx t_1$
(c) $\vdash_H t_1 \approx t_2 \rightarrow t_2 \approx t_3 \rightarrow t_1 \approx t_3$
relevant axioms
$\alpha \rightarrow \big(\beta \rightarrow\alpha \big)$
$ \big({\alpha \rightarrow \big(\beta \rightarrow\gamma \big)}\big) \rightarrow \big({\big(\alpha \rightarrow\beta \big) \rightarrow \big(\alpha \rightarrow\gamma \big)} \big)$
$\big( \lnot \beta \rightarrow \lnot \alpha \big) \rightarrow \big( (\lnot \beta \rightarrow\alpha) \rightarrow \beta \big)$