1

how can I prove the following: Prove that $$ \lim_{x \to y} \frac{x^k-y^k}{x-y} = ky^{k-1} $$ for a fixed $y\in\mathbb R$ and $k\in\mathbb N$. I already tried a lot but somehow I don't come to the correct conclusion

maa
  • 65
  • 9

2 Answers2

1

Using $$x^k -y^k= (x-y)\left(\sum_{i=0}^{k-1} x^{k-i-1}y^i\right)$$

the limit is $$\lim_{x \to y}\sum_{i=0}^{k-1} x^{k-i-1}y^i = \sum_{i=0}^{k-1} y^{k-1}=ky^{k-1}$$

user8277998
  • 2,666
0

The derivative of a function $f(x)$ is $$ \frac{df}{dx} = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h} $$

Let $f(x) = x^k$ and $h = x-y$. Then: $$ \frac{df}{dx} = \lim_{h \to 0} \frac{(x+h)^k-x^k}{h} $$

From the binomial theorem (https://en.wikipedia.org/wiki/Binomial_theorem) you can see that $$ \frac{df}{dx} = \lim_{h \to 0} \frac{(x^k + k x^{k-1} h + \cdots )-x^k}{h} = \lim_{h \to 0} \frac{k x^{k-1} h + \cdots}{h} $$ The terms included in the $\cdots$ involve higher powers of $h$, i.e., $h^2$, $h^3$ and so on. If you divide all by $h$, you will have $$ \frac{df}{dx} = \lim_{h \to 0} k x^{k-1} + \cdots $$ If you make $h\to 0$, the terms included in $\cdots$ vanishes, and you have $$\frac{df}{dx} = k x^{k-1}$$ Then: $$ \lim_{x \to y} \frac{x^k-y^k}{x-y} = k x^{k-1} $$

Naturally, you can see that $df/dx = k x^{k-1}$ using derivative rules.

rafa11111
  • 1,514
  • 2
  • 10
  • 19