$$P_m(q)=1+c_m\sum_{k=1}^{\infty}{n^{2m+1}{q^k\over 1-q^k}}\tag1$$
$m:=1,2,3,...$
$$P_1(q)=1+240\sum_{k=1}^{\infty}{n^{3}{q^k\over 1-q^k}}\tag a$$
$$P_2(q)=1-504\sum_{k=1}^{\infty}{n^{5}{q^k\over 1-q^k}}\tag b$$
$$P_3(q)=1+480\sum_{k=1}^{\infty}{n^{7}{q^k\over 1-q^k}}\tag c$$
$m\ge1$ and $x\ge0$
Then we have $$P_m(q)=[-4(4x+3)]^{m+1}\tag2$$
where $$q=e^{-{\pi\over \sqrt{4x+3}}}$$
$(2)$ is apparently rational values but how do we show that $P_m(q)=[-4(4x+3)]^{m+1}?$