Let $$A_k=\sum_{n=1}^{\infty}{n^3\over e^{kn\pi}-1}$$
How can we show that $$A_1+11A_2-32A_4={1\over 12}?$$
I haven't got any idea where to begin...
Let $$A_k=\sum_{n=1}^{\infty}{n^3\over e^{kn\pi}-1}$$
How can we show that $$A_1+11A_2-32A_4={1\over 12}?$$
I haven't got any idea where to begin...
This is very similar to the sum in this answer (do have a look at it for getting familiar with the notation) but uses another Ramanujan function $$Q(q) = 1+240\sum_{n=1}^{\infty}\frac{n^{3}q^{n}}{1-q^{n}}\tag{1}$$ which is related to the elliptic modulus $k$ and elliptic integral $K=K(k) $ via the relations \begin{align} Q(q) &=\left(\frac{2K}{\pi}\right)^{4}(1+14k^{2}+k^{4})\tag{2}\\ Q(q^{2}) &= \left(\frac{2K}{\pi}\right)^{4}(1-k^{2}+k^{4})\tag{3}\\ Q(q^{4}) &= \left(\frac{2K}{\pi}\right)^{4}\left(1-k^{2}+\frac{k^{4}}{16}\right)\tag{4} \end{align} Next note that if $q=e^{-\pi} $ then $k^{2}=1/2$ and hence we have \begin{align} 1+240A_1 &= Q(e^{-\pi}) =\left(\frac{2K} {\pi} \right ) ^{4}\cdot \frac{33} {4}\tag{5} \\ 1+240A_2 &= Q(e^{-2\pi}) =\left(\frac{2K}{\pi}\right) ^{4}\cdot\frac{3}{4}\tag{6}\\ 1+240A_4 &= Q(e^{-4\pi})= \left(\frac{2K}{\pi}\right)^{4}\cdot\frac{33}{64}\tag{7} \end{align} And then the linear combination $(5)+11(6)-32(7)$ of above equations gives us $$240(A_1+11A_2-32A_4)-20=0$$ as desired.
You may also have a look at this answer which combines $A_2,A_4$ in a different manner to get another rational number.