Prove that $\cos x +\cos 2x + \cos 3x + ...+ \cos nx =\cos \left(\dfrac{n+1}{2}x\right) \sin \left(\dfrac{nx}{2}\right)\csc \dfrac{x}{2}$
Attempt:
Clearly, $P(1)$ is true.
Assume $P(m)$ is true.
Thus, $P(m+1) = (\cos x +\cos 2x + \cos 3x + ...+ \cos mx)+ \cos((m+1)x)$
$= \cos \left(\dfrac{m+1}{2}x\right) \sin \left(\dfrac{mx}{2}\right)\csc \dfrac{x}{2} + \cos((m+1)x) \\= \csc (\dfrac x 2)\left(\cos \left(\dfrac{m+1}{2}x\right) \sin \left(\dfrac{mx}{2}\right)+ (\cos(m+1)x)\sin (\dfrac x 2)\right)$
What do I do next?