This is a follow-up question to the following questions:
Evaluating $\int_0^1 \frac{\ln^m (1+x)\ln^n x}{x}\; dx$ for $m,n\in\mathbb{N}$
Closed form for ${\large\int}_0^1\frac{\ln^4(1+x)\ln x}x \, dx$
What is a closed form for ${\large\int}_0^1\frac{\ln^3(1+x)\,\ln^2x}xdx$?
Let $p\ge 1$ and $q\ge 1$ be integers. We consider the following quantity: \begin{equation} {\mathfrak I}^{(p,q)}:= \int\limits_0^1 \frac{[\log(1+x)]^p}{x} [\log(x)]^q dx \end{equation}
By using the techniques developed in the questions above we computed the result for $p+q=5$. We have: \begin{eqnarray} {\mathfrak I}^{(5,0)} &=& -120 \text{Li}_6\left(\frac{1}{2}\right)-60 \text{Li}_4\left(\frac{1}{2}\right) \log ^2(2)-120 \text{Li}_5\left(\frac{1}{2}\right) \log (2)-\frac{35}{2} \zeta (3) \log ^3(2)+\frac{8 \pi ^6}{63}-\frac{5 \log ^6(2)}{3}+\frac{5}{4} \pi ^2 \log ^4(2)\\ {\mathfrak I}^{(4,1)} &=& -120 \text{Li}_6\left(\frac{1}{2}\right)-24 \text{Li}_4\left(\frac{1}{2}\right) \log ^2(2)-72 \text{Li}_5\left(\frac{1}{2}\right) \log (2)+12 \zeta (3)^2-3 \zeta (3) \log ^3(2)-2 \pi ^2 \zeta (3) \log (2)+\frac{3}{4} \zeta (5) \log (2)+\frac{26 \pi ^6}{315}-\frac{17 \log ^6(2)}{30}+\frac{1}{3} \pi ^2 \log ^4(2)-\frac{1}{60} \pi ^4 \log ^2(2)+24 {\bf H}^{(1)}_5(1/2) \\ {\mathfrak I}^{(3,2)} &=& -108 \text{Li}_6\left(\frac{1}{2}\right)-36 \text{Li}_5\left(\frac{1}{2}\right) \log (2)+12 \zeta (3)^2+6 \zeta (3) \log ^3(2)-3 \pi ^2 \zeta (3) \log (2)+\frac{9}{8} \zeta (5) \log (2)+\frac{143 \pi ^6}{2520}+\frac{3 \log ^6(2)}{20}-\frac{1}{4} \pi ^2 \log ^4(2)-\frac{1}{40} \pi ^4 \log ^2(2)+36 {\bf H}^{(1)}_5(1/2)\\ {\mathfrak I}^{(2,3)} &=& -72 \text{Li}_6\left(\frac{1}{2}\right)-8 \text{Li}_5\left(\frac{1}{2}\right) \log (8)+6 \zeta (3)^2+4 \zeta (3) \log ^3(2)-\pi ^2 \zeta (3) \log (4)+\frac{3}{4} \zeta (5) \log (2)+\frac{17 \pi ^6}{420}+\frac{\log ^6(2)}{10}-\frac{1}{6} \pi ^2 \log ^4(2)-\frac{1}{60} \pi ^4 \log ^2(2)+24 {\bf H}^{(1)}_5(1/2)\\ {\mathfrak I}^{(1,4)} &=& \frac{93}{4} \text{Li}_6\left(1\right) \end{eqnarray}
Here \begin{equation} {\bf H}^{(p)}_q(x) := \sum\limits_{m=1}^\infty \frac{H_m^{(p)}}{m^q} x^m \end{equation}
Note that the term ${\bf H}^{(1)}_5(1/2)$ cannot be reduced to poly-logarithms only for the following reason. Clearly we have: \begin{eqnarray} &&{\bf H}^{(1)}_5(-1) = \int\limits_0^{-1} \frac{\log((-1)/t)^4}{(4)!}\cdot \frac{Li_1(t)}{t(1-t)} dt\\ &&\underbrace{=}_{u=\frac{t}{t-1}} \frac{1}{4!}\sum\limits_{p=0}^4 \binom{4}{p} (-1)^p \int\limits_0^{1/2} \frac{\log(u)^p \log(1-u)^{5-p}}{u} du\\&&= -2 {\bf H}^{(1)}_5(1/2)+6 \text{Li}_6\left(\frac{1}{2}\right)-2 \text{Li}_4\left(\frac{1}{2}\right) \log ^2(2)+\text{Li}_4\left(\frac{1}{2}\right) \log (2) \log (4)+\text{Li}_5\left(\frac{1}{2}\right) \log (4)-\frac{\zeta (3)^2}{2}+\frac{1}{72} \pi ^2 \left(12 \zeta (3) \log (2)+\log ^4(2)\right)-\frac{1}{3} \zeta (3) \log ^3(2)-\frac{1}{16} \zeta (5) \log (2)-\frac{19 \pi ^6}{4320}-\frac{\log ^6(2)}{120}+\frac{1}{720} \pi ^4 \log ^2(2) \end{eqnarray} Since ${\bf H}^{(1)}_5(-1) = \zeta(-5,1)+Li_6(-1)$ and since it is known that $\zeta(-5,1)$ cannot be reduced to univariate zeta functions the same holds for ${\bf H}^{(1)}_5(1/2)$. To reiterate the quantity ${\bf H}^{(1)}_5(1/2)$ is not redundant in here.
Now my question would be the usual one, meaning can we derive a closed-form expression for the quantity above for arbitary values of $p$ and $q$. From the results above we can see that some new quantity ${\bf H}^{(1)}_5(1/2)$ enters the result. Can this quantity be reduced to polylogarithms and elementary functions? If not then, for $p+q \ge 5$, what will be the minimal set of quantities that will appear in the result?