Let $A$ be an $n \times n$ matrix over $\mathbb{K}$ such as $\text{rank}(A)=1.$ Show that it's minimal polynomial is $m_A(x) = λ(λ-a) , a \in \mathbb{K}.$
I tried to prove it using induction. My work so far:
Let $n =2$ and $A = \begin{bmatrix}a&b\\c&d \end{bmatrix}$:
If $c=0_{\mathbb{K}}:$
Since $\text{rank}(A)=1$, $d=0_{\mathbb{K}}$. So, $A=\begin{bmatrix}a&b\\0&0 \end{bmatrix} \implies \det(A-λI) = λ(λ-α) = m_A(λ)$
If $c\ne 0_{\mathbb{K}}$
$A = \begin{bmatrix}a&b\\c&d \end{bmatrix} \to \begin{bmatrix}a&b\\0&-ad/c +b \end{bmatrix} \implies b = ad/c \implies A = \begin{bmatrix}a&ad/c\\c&d \end{bmatrix} \implies \det(A-λI) = λ(λ-(α+d)) , (a+d) \in \mathbb{K}$
On that point, I tried letting $n=3$ and writing the matrix in the form of $A = \begin{bmatrix}A_1&0\\0&A_2 \end{bmatrix}$,after Gauss elimination, where $A_1$ is a $2 \times 2 $ matix and $A_2$ is a $1 \times 1$ matrix and working my way from $n=k$ to $ n =k+1$, but it seems like I'll be doing way too much work. I there a better/shorter way of doing it?