I am looking for any kind of help you can provide to evaluate the sum $ \sum_{i=0}^{n}\frac{1+(-1)^i}{2}\binom{n}{i} $, which equals $ \binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \cdots + \binom{n}{k} $ where $k=n$ if $n$ is even or $k=n-1$ otherwise.
Thank you in advance.