3

Given the system $$ \left[ \begin{array}{ccc|c} x_1&x_2&x_3&k\\ x_1&x_2&kx_3&1\\ x_1&kx_2&x_3&1\\ kx_1&x_2&x_3&1\\ \end{array} \right] $$ I tried to solve this...It looks simple but I found a problem at the end... $$ \left[ \begin{array}{ccc|c} 1&1&1&k\\ 1&1&k&1\\ 1&k&1&1\\ k&1&1&1\\ \end{array} \right] $$ $$ \left[ \begin{array}{ccc|c} 1&1&1&k\\ 0&0&k-1&1-k\\ 0&k-1&0&1-k\\ k-1&0&0&1-k\\ \end{array} \right] $$ $$ \left[ \begin{array}{ccc|c} 1&1&1&k\\ 0&0&1& \frac{1-k}{k-1}\\ 0&1&0& \frac{1-k}{k-1}\\ 1&0&0& \frac{1-k}{k-1}\\ \end{array} \right] $$ Finally, $$ \left[ \begin{array}{ccc|c} 1&0&0& -1\\ 0&1&0& -1\\ 0&0&1& -1\\ 0&0&0&k+3\\ \end{array} \right] $$ There is no way to get infinitely many solutions. $$$$ However, I tried to put the system into other online calculator... Click me$$$$ There is infinitely many solutions when k=4 or other numbers. What's wrong of my work...

Dennis
  • 95

2 Answers2

1

Let us add the last three equations to gather to get: $$(k+2)(x_1+x_2+x_3) =3$$ Then we use the first one to get, $$(k+2)(k)=3 \implies k=1, -3$$

So, ?

0

The system has solutions only if

$\det(A|B)=0$, otherwise $\text{rank }(A|B)=4>\text{rank }(A)$

that is $k^4-6 k^2+8 k-3=0\to (k-1)^3 (k+3)=0$

for $k=-3$ and $k=1$

for $k=-3$ we get the system

$\begin {cases} x+y+z=-3\\ x+y-3 z=1\\ x-3 y+z=1\\ -3x+y+z=1\\ \end{cases} $

which has solution $(-1,-1,-1)$

for $k=1$ we get

$\begin {cases} x+y+z=1\\ x+y+ z=1\\ x+y+z=1\\ x+y+z=1\\ \end{cases} $

that is

$x+y+z=1$ which gives infinite solutions

$(t,u,1-t-u)$

Hope this helps

Raffaele
  • 26,371