I am trying to prove that the volume of an $n$-sphere goes to zero as dimension increases to infinity (I know this to be true). Here is my work:
\begin{align} \lim_{n\to\infty} \left( V_n \right) & \\ \lim_{n\to\infty} \left( \frac{\pi^{n/2} R^n} {\Gamma \left(\frac{n+2}2 \right)} \right) & = \frac \infty \infty \\ \text{Subsitute } \Gamma(z) & = \int_0^\infty x^{z-1} e^{-x} dx \\ \lim_{n\to\infty} \left( \frac{\pi^{n/2} R^n} {\int_0^\infty x^{n/2} e^{-x} \, dx} \right) \\ \text{By Leibniz integral rule, } \frac{d}{dx} \int^b_a f(x,y) \, dx & =\int^b_a f_x(x,y)\, dx \\ \text{Looking at denominator, } \int_0^\infty x^{n/2} e^{-x} \, dx \\ \frac d {dn} \int_0^\infty x^{n/2} e^{-x} \, dx & = \int_0^\infty \frac{\partial}{\partial n} x^{n/2} e^{-x} \, dx \\ & =\int_0^\infty x^{n/2} e^{-x} \ln \left(\frac n 2 \right) \, dx \\ & =\ln \left(\frac n 2 \right)\Gamma \left(\frac{n+2} 2 \right) \\ \text{Using L'Hospital's rule, } \lim_{n\to\infty} \left( \frac{\pi^{n/2} R^n} {\int_0^\infty x^{n/2} e^{-x} \, dx } \right) & = \lim_{n\to\infty} \left( \frac{\ln (n) \pi^{n/2} R^n + \ln \left(\frac n 2 \right) \pi^{n/2} R^n }{\ln \left(\frac n 2 \right)\Gamma \left(\frac{n+2} 2 \right)} \right) \end{align} Since the limit starts as the indefinite $\frac \infty \infty$, I am trying to use L'Hospital's rule. However, after using the rule once I am left with another indefinite $\frac{\infty}{\infty}$. I don't believe repeated uses of L'Hospital's Rule will work since iterations don't change the indefinite state.
Any help or insight would be greatly appreciated.