I'm self studying probability theory and I'm stuck in the following problems
1) Prove the following for a random variable $X$ with cdf $F$
$$E(x)=\int_0^\infty (1-F(x)) dx - \int_\infty^0 F(x) dx$$
$$\text{Var}(x)=2 \int \!\!\! \int_{-\infty<x<y<+\infty}\ F(x)(1-F(y)) dxdy$$
Find the equivalent type for $\mathbb{E}(x^n)$ and $\mathbb{E}(|x|^n)$
Hint:use the Tonelli-Fubini theorem.
2)Let $\mathbb{X}_n$,$\mathbb{X}$ r.v. with $\mathbb{X}_n\geq0$,$\mathbb{X}_n\rightarrow\mathbb{X}$ and $\mathbb{E}(X)\leq c<\infty$. Prove that $\mathbb{X}$ is integrable and $\mathbb{E}(X)\leq c$
3)Let $\mathbb{X}$,$\mathbb{Y}$,$\mathbb{Z}$ and $\mathbb{X}_n$,$\mathbb{Y}_n$,$\mathbb{Z}_n$ r.v. with $\mathbb{X}_n\rightarrow\mathbb{X}$,$\mathbb{Y}_n\rightarrow\mathbb{Y}$,$\mathbb{Z}_n\rightarrow\mathbb{Z}$, $\mathbb{X}_n\leq\mathbb{Y}_n\leq\mathbb{Z}_n$, $\mathbb{E}(X_n)\rightarrow\mathbb{E}(X)$ and $\mathbb{E}(Z_n)\rightarrow\mathbb{E}(Z)$.
Prove that if $\mathbb{E}(Z)$ and $\mathbb{E}(X)$ exist then $\mathbb{E}(Y)$ exists and $\mathbb{E}(Y_n)\rightarrow\mathbb{E}(Y)$.