$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\int_{0}^{\infty}{\sin\pars{px}\sin\pars{qx} \over x^{2}}\,\dd x & =
{1 \over 2}\,p q\int_{0}^{\infty}{\sin\pars{\verts{p}x} \over \verts{p}x}\,
{\sin\pars{\verts{q}x} \over \verts{q}x}\,\dd x
\\[5mm] & =
{1 \over 2}\,p q\int_{-\infty}^{\infty}\
\pars{{1 \over 2}\int_{-1}^{1}\expo{\ic k_{1}\verts{p}x}\dd k_{1}}
\pars{{1 \over 2}\int_{-1}^{1}\expo{\ic k_{2}\verts{q}x}\dd k_{2}}\,\dd x
\\[5mm] & =
{1 \over 4}\,\pi p q\int_{-1}^{1}\int_{-1}^{1}
\int_{-\infty}^{\infty}\expo{\ic\pars{k_{1}\verts{p} + k_{2}\verts{q}}x}
\,{\dd x \over 2\pi}\,\dd k_{1}\,\dd k_{2}
\\[5mm] & =
{1 \over 4}\,\pi p q\int_{-1}^{1}\int_{-1}^{1}
\delta\pars{k_{1}\verts{p} + k_{2}\verts{q}}\,\dd k_{1}\,\dd k_{2}
\\[5mm] & =
{1 \over 4}\,\pi p q\int_{-1}^{1}\int_{-1}^{1}
{\delta\pars{k_{1} + k_{2}\verts{q/p}} \over
\verts{\vphantom{\Large A}\verts{p}}}\,\dd k_{1}\,\dd k_{2}
\\[5mm] & =
{1 \over 4}\,\pi\,\mrm{sgn}\pars{p}q
\int_{-1}^{1}\bracks{-1 < -\verts{q \over p}\,k_{2} < 1}\,\dd k_{2}
\\[5mm] & =
{1 \over 4}\,\pi\,\mrm{sgn}\pars{p}q
\int_{-1}^{1}\bracks{\verts{k_{2}} < \verts{p \over q}}\,\dd k_{2}
\\[5mm] & =
{1 \over 2}\,\pi\,\mrm{sgn}\pars{p}q
\int_{0}^{1}\bracks{k_{2} < \verts{p \over q}}\,\dd k_{2}
\\[5mm] & =
{1 \over 2}\,\pi\,\mrm{sgn}\pars{p}q
\braces{\bracks{\verts{p \over q} < 1}\int_{0}^{\verts{p/q}}\,\dd k_{2} +
\bracks{\verts{p \over q} > 1}\int_{0}^{1}\,\dd k_{2}}
\\[5mm] & =
{1 \over 2}\,\pi\,\mrm{sgn}\pars{p}q
\braces{\bracks{\verts{p} < \verts{q}}\verts{p \over q} +
\bracks{\verts{p} > \verts{q}}}
\\[5mm] & =
{1 \over 2}\,\pi\,\mrm{sgn}\pars{p}\,\mrm{sgn}\pars{q}
\braces{\vphantom{\Large A}\bracks{\vphantom{\large A}\verts{p} < \verts{q}}\verts{p} +
\bracks{\vphantom{\large A}\verts{p} > \verts{q}}\verts{q}}
\\[5mm] & =
\bbx{{1 \over 2}\,\pi
\,\mrm{sgn}\pars{p}\,\mrm{sgn}\pars{q}\min\pars{\verts{p},\verts{q}}}
\end{align}