By the use of Fermat's little theorem: $$a^{p} \equiv a \mod{p}$$
$$(a^p)^{q} \equiv a^{pq} \equiv a^{q} \mod{p}$$
$$a^{pq} \equiv 0+a^{q}\equiv (a^p-a)+a^{q} \equiv a^p+a^{q}-a \mod{p}$$
Likewise, we have the same for $q$:
$$a^{pq} \equiv 0+a^{p}\equiv (a^q-a)+a^{p} \equiv a^p+a^{q}-a \mod{q}$$
Therefore,
$$p \mid a^{pq}-a^{p}-a^{q}+a$$
$$q \mid a^{pq}-a^{p}-a^{q}+a$$
Now, since $[p,q]=pq$, by the definition of the least common multiple, we see
that:
$$pq \mid a^{pq}-a^{p}-a^{q}+a$$
Q.E.D.
Remark:
Note that if $a \mid c$ and $b \mid c$, then $c$ is a common multiple of $a$ and $b$ and therefore, by definition, the least common multiple of $a,b$, i.e. $[a,b]$ divides $c$. In other words, $[a,b] \mid c$