This result (and a generalisation) is proved by Glasser, I transcribe the first part here following the notation in the original post.
From a graph of the relation $\phi = x - 1/x$, one sees that the solution for $x$ has two branches
$$x_\pm = \frac{1}{2} \left(\phi \pm \sqrt{\phi^2 + 4}\right), \quad -\infty < \phi < \infty.$$
Thus
$$I = \int_{-\infty}^\infty f(\phi) \, dx = \int_{-\infty}^{0^-} f(\phi) \, dx_- + \int_{0^+}^{-\infty} f(\phi) \, dx_+=\int_{-\infty}^\infty f(\phi) (x_-'+x_+')\, d\phi.$$
But $$x_-' + x_+' = \frac{1}{2} \left(1 - \frac{\phi}{\sqrt{\phi^2+4}}+1 + \frac{\phi}{\sqrt{\phi^2+4}}\right) = 1.$$