Show whether:
$$\sum_{n=1}^{\infty}\frac{n!}{n^n}$$
converges.
By the ratio test:
$$\frac{a_{n+1}}{a_n} = \frac{(n+1)!}{(n+1)^{n+1}}\cdot \frac{n^n}{n!} = \left(\frac{n}{n+1}\right)^n \\ =\left(\frac{n}{n+1}\right)^n = \left(\frac{1+n}{n}\right)^{-n} = 1 \div \left(1+\frac{1}{n}\right)^n$$
Taking the limit $n\rightarrow\infty$,
$$1 \div \left(1+\frac{1}{n}\right)^n \rightarrow \frac{1}{e} <1$$
Thus the series converges.
With a big hammer:
By Sterling's approximation: $$ n! \operatorname*{\sim}_{n\to\infty} \sqrt{2\pi n}\left(\frac{n}{e}\right)^n $$ from which $$ \frac{n!}{n^n}\operatorname*{\sim}_{n\to\infty} \sqrt{2\pi} \frac{\sqrt{n}}{e^n} $$ and we can immediately conclude by comparison with the series (with positive terms) $\sum_n \frac{\sqrt{n}}{e^n}$.
(Note that the "simple"-to-prove version of Sterling's suffices, the one with a constant $C>0$ instead of the actual value $\sqrt{2\pi}$.)