2

$\mathop {\lim }\limits_{x \to 0} \frac{1}{x}\left( {1 - \frac{{\sin x}}{x}} \right) = 0$

The result can be checked with Taylor series or with L'Hôpital's rule.

I wonder if it's possible to reach the same result with some standard algebraic manipulations (given that $\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1$)

Luca M
  • 395

3 Answers3

5

Hint:

$$\dfrac1x\left(1-\dfrac{\sin x}x\right)=\dfrac{x-\sin x}{x^3}\cdot x$$

Now use Are all limits solvable without L'Hôpital Rule or Series Expansion

1

In my answer here (Is this really equal to sin x?), I show that, for $x > 0$, $x > \sin(x) \gt x-\dfrac{x^3}{6} $ so that $1 > \dfrac{\sin(x)}{x} \gt 1-\dfrac{x^2}{6} $ or $-\dfrac{x^2}{6} \lt 1-\dfrac{\sin(x)}{x} \lt 0 $ or $-\dfrac{x}{6} \lt \dfrac1{x}(1-\dfrac{\sin(x)}{x}) \lt 0 $.

Letting $x \to 0$, this gives you what you want.

marty cohen
  • 107,799
0

Following @labbhattacharjee hint here's my elaboration on Are all limits solvable without L'Hôpital Rule or Series Expansion. I've added this "self-reply" in the hope it might be useful for others in this specific case. I've also added some more detail to the linked post derivation.

$L_0=\mathop {\lim }\limits_{x \to 0} \frac{1}{x}\left( {1 - \frac{{\sin x}}{x}} \right) = \mathop {\lim }\limits_{x \to 0} \frac{{x - \sin x}}{{{x^3}}}x$

We calculate the limit $L$ of the first factor inside $L_0$

$L = \mathop {\lim }\limits_{x \to 0} \frac{{x - \sin x}}{{{x^3}}} = \mathop {\lim }\limits_{y \to 0} \frac{{3y - \sin 3y}}{{27{y^3}}}$ where we have set $y = 3x$

Now we must use the trigonometric identity

$\sin 3y = \sin \left( {2y + y} \right) = \sin 2y\cos y + \cos 2y\sin y = 2\sin y{\cos ^2}y + \left( {1 - 2{{\sin }^2}y} \right)\sin y = 2\sin y - 2{\sin ^3}y + \sin y - 2{\sin ^3}y$

that is

$\sin 3y = 3\sin y - 4{\sin ^3}y$

Then we have

$L = \mathop {\lim }\limits_{y \to 0} \frac{{3y - \sin 3y}}{{27{y^3}}} = \mathop {\lim }\limits_{y \to 0} \frac{{3y - 3\sin y + 4{{\sin }^3}y}}{{27{y^3}}} = \mathop {\lim }\limits_{y \to 0} \frac{{3y - 3\sin y}}{{27{y^3}}} + \mathop {\lim }\limits_{y \to 0} \frac{{4{{\sin }^3}y}}{{27{y^3}}} = \frac{1}{9}\mathop {\lim }\limits_{y \to 0} \frac{{y - \sin y}}{{{y^3}}} + \frac{4}{{27}}$

$L = \mathop {\lim }\limits_{x \to 0} \frac{{x - \sin x}}{{{x^3}}} = \mathop {\lim }\limits_{y \to 0} \frac{{3y - \sin 3y}}{{27{y^3}}} = \mathop {\lim }\limits_{y \to 0} \frac{{y - \sin y}}{{{y^3}}} = \frac{1}{9}L + \frac{4}{{27}}$

So we have the equation

$L = \frac{1}{9}L + \frac{4}{{27}}$

whose solution is

$L = \frac{1}{6}$

The original limit is then $L_0=0$ as it is the product of a finite number and an infinitesimal quantity

Luca M
  • 395