Show that $\sin x$ lies between $x-x^3/6$ and $x \;$ $\forall x \in R$
I am getting:
$$\sin(x) = x - \frac{x^3}{3!} + R_4(x)$$
where $R_4(x) = \frac{\cos(c)x^5}{5!}$ for some $c$ between $0$ and $x$
I want to prove $R_4(x)\geq 0$ to arrive at the result $x-x^3/3 \leq \sin(x)$.
for:$$0 \leq x \leq \pi/2 \Rightarrow 0<c<\pi/2 \Rightarrow R_4(x)\geq 0$$ but for: $$-\pi/2 \leq x < 0 \Rightarrow -\pi/2 < c < 0 \Rightarrow R_4(x) < 0$$
How can I proceed with this ? There are many cases that I need to check