I am trying to show $\mathbb{R}^\mathbb{N}$ ~ $\mathbb{R}$ using the Cantor Bernstein method. Here is my proof so far:
Let $f: \mathbb{R}\to\mathbb{R}^\mathbb{N}$ be defined as for each $r_n\in\mathbb{R}$ where $n\in\mathbb{N}$, $f(r_n)=(r_n,0,0,...)$. Thus, we have an injection from $\mathbb{R}$ to $\mathbb{R}^\mathbb{N}$. (For me, $0$ is in the natural numbers.)
Now, for the other direction, let $g:\mathbb{R}^\mathbb{N}\to\mathbb{R}$ be defined as follows. Let $(r_0,r_1,...,r_n,...)\in\mathbb{R}^\mathbb{N}$ where $r_n\in\mathbb{R}$ and let $r_n=Z_n.a_{0,n}a_{1,n}a_{2,n}...$ be the unique corresponding decimal expansion where $n\in\mathbb{N}$, $Z\in\mathbb{Z}$, $0\leq a_{n,n}\leq 9$, and the sequence does not end in infinitely many 9's.
Consider the list:
$r_0=r_n=Z_0.a_{0,0}a_{1,0}a_{2,0}...$
$r_1=r_n=Z_1.a_{0,1}a_{1,1}a_{2,1}...$
$r_2=r_n=Z_2.a_{0,2}a_{1,2}a_{2,2}...$
Then, let $r=0.a_{0,0}a_{1,0}a_{0,1}a_{0,2}a_{1,1}a_{2,0}...\in\mathbb{R}$.
So, $g((r_0,r_1,...,r_n,...))= r$.
Then, we have an injection from $\mathbb{R}^\mathbb{N}$ to $\mathbb{R}$. By Cantor Bernstein Theorem, $\mathbb{R}^\mathbb{N}$ ~ $\mathbb{R}$.
Does this proof work or how can I modify/improve it?