Prove the identity:
$$ {2n\choose0} + {2n\choose2} + \dots + {2n\choose{2n}} = 2^{2n-1} $$$\forall n\in\mathbb{N}$
Progress:
I've tried using the binomial theorem to get:
$$
2^{2n-1}=\sum\limits_{k=0}^{2n-1} {{2n-1}\choose k}
$$
Followed by Pascal's:
$$
{2n\choose k}={{2n-1}\choose k}+{{2n-1}\choose{k-1}}
$$ Then:
$$
2^{2n-1}=\sum\limits_{k=0}^{2n-1} \Bigg({2n\choose k}-{{2n-1}\choose{k-1}}\Bigg)
$$ However, I don't feel right about this.