3

I was observing the series $$\sum_{n=1}^{\infty} \frac{\zeta(2n+1)-1}{2n+1}$$ And Wolfram alpha says that it does not converge. But I'm convinced that this is wrong since $$\sum_{n=1}^{\infty} (\zeta(2n+1)-1) = \frac{1}{4}$$

I would imagine then, by comparison test, that the first series clearly converges. Am I wrong? If it does converge, do we have a value for it?

  • In your answer, what is supposed to be in the argument for the log? And no, I'm very certain that the parenthesis are fine. Wolfram isn't even telling me what test it used to show it doesn't converge. – Ryan Goulden Dec 03 '17 at 19:28
  • For what it's worth, Mathematica (v10) returns 1/2 (2 - 2 EulerGamma - Log[2]). – heropup Dec 04 '17 at 00:36

4 Answers4

3

Hint. The convergence may be obtained by the comparison test using, as $n \to \infty$, $$ \frac{\zeta(2n+1)-1}{2n+1}\sim \frac{\frac1{2^{2n+1}}}{2n+1} $$ a closed form of the sum may be obtained by integrating the standard series $$ \psi(1+z)+\psi(1-z)= -2\gamma -2\sum_{k=1}^\infty \zeta (2k+1) z^{2k}, \qquad |z|<1, $$ where $\psi$ denotes the digamma function.

Olivier Oloa
  • 120,989
3

As you noticed, since the series $\sum_{n\geq 1}\left[\zeta(2n+1)-1\right]$ has bounded partial sums, the series $\sum_{n\geq 1}\frac{\zeta(2n+1)-1}{2n+1}$ is convergent by Dirichlet's test.

By the integral representation for the $\zeta(s)$ function in the region $s>1$ (i.e. by the inverse Laplace transform) we have $$ \zeta(2k+1) =\int_{0}^{+\infty}\frac{x^{2k}}{(2k)!}\cdot \frac{dx}{e^x-1} $$ $$ \zeta(2n+1)-1 =\int_{0}^{+\infty}\frac{x^{2n}}{(2n)!}\cdot \frac{dx}{e^x(e^x-1)} \tag{A}$$ $$ \frac{\zeta(2n+1)-1}{2n+1} =\int_{0}^{+\infty}\frac{x^{2n}}{(2n+1)!}\cdot \frac{dx}{e^x(e^x-1)} \tag{B}$$ $$ \sum_{n\geq 1}\frac{\zeta(2n+1)-1}{2n+1} =\int_{0}^{+\infty}\frac{\sinh(x)-x}{x}\cdot \frac{dx}{e^x(e^x-1)} \tag{C}$$ and the RHS of $(C)$ equals $\color{red}{1-\gamma-\frac{1}{2}\log 2}\approx 0.07621$ by Frullani's theorem and the integral representation for the Euler-Mascheroni constant. Definitely a convergent series, and a curious bug of WA.

Jack D'Aurizio
  • 353,855
3

Perhaps I can fill in the missing details for you to help show how $$I = \int^\infty_0 \frac{\sinh x - x}{x} \cdot \frac{dx}{e^x (e^x - 1)} = 1 - \gamma - \frac{1}{2} \ln (2).$$

To do this we will follow Jack's suggestion and use Frullani's theorem together with the following integral representation for the Euler-Mascheroni constant of $$\gamma = \int^\infty_0 \left (\frac{1}{e^x - 1} - \frac{1}{x e^x} \right ) \, dx.$$

We begin by observering that $$\frac{1}{e^x (e^x - 1)} = \frac{1}{e^x - 1} - \frac{1}{e^x}.$$ So the integral can be rewritten as \begin{align*} I &= \int^\infty_0 \frac{\sinh x - x}{x} \left (\frac{1}{e^x - 1} - \frac{1}{e^x} \right ) \, dx\\ &= \int^\infty_0 \left [\frac{\sinh x - x}{x (e^x - 1)} - \frac{\sinh x - x}{x e^x} \right ] \, dx\\ &= \int^\infty_0 \left [\frac{\sinh x}{x(e^x - 1)} - \frac{1}{e^x - 1} - \frac{\sinh x}{x e^x} + \frac{1}{e^x} \right ] \, dx\\ &= \int^\infty_0 \left [\frac{\sinh x}{x(e^x - 1)} - \frac{1}{e^x - 1} - \frac{\sinh x + 1}{x e^x} + \frac{1}{xe^x} + e^{-x} \right ] \, dx\\ &= -\int^\infty_0 \left (\frac{1}{e^x - 1} - \frac{1}{x e^x} \right ) \, dx + \int^\infty_0 e^{-x} \, dx + \int^\infty_0 \left [\frac{\sinh x}{x(e^x - 1)} - \frac{\sinh x + 1}{x e^x} \right ] \, dx\\ &= -\gamma + 1 + \int^\infty_0 \frac{1}{x} \left [\frac{\sinh x}{e^x - 1} - \frac{\sinh x + 1}{e^x} \right ] \, dx\\ &= 1 - \gamma + I_\alpha. \end{align*}

Now for the term appearing in the square brackets of the integral, it can be rewritten as \begin{align*} \frac{\sinh x}{e^x - 1} - \frac{\sinh x + 1}{e^x} &= \frac{e^x \sinh x - (e^x - 1)(\sinh x + 1)}{e^x (e^x - 1)}\\ &= \frac{\sinh x - e^x + 1}{e^x (e^x - 1)}\\ &= \frac{\frac{1}{2} (e^x - e^{-x}) - e^x + 1}{e^x (e^x - 1)}\\ &= -\frac{e^{-2x} - 2e^{-x} + 1}{2(e^x - 1)}\\ &= -\frac{(1 - e^{-x})^2}{2 e^x (1 - e^{-x})}\\ &= \frac{e^{-2x} - e^{-x}}{2}. \end{align*}

Now as $$I_\alpha = \int^\infty_0 \frac{e^{-2x} - e^{-x}}{x} \, dx,$$ is of the form of a Frullani integral, namely $$\int^\infty_0 \frac{f(ax) - f(bx)}{x} \, dx = (f(0) - f(\infty)) \ln \left (\frac{b}{a} \right ),$$ where $f(x) = e^{-x}, a = 2, b = 1$, as $f(0) = 1$ and $f(\infty) = 0$ we have $$I_\alpha = \ln \left (\frac{1}{2} \right ) = -\ln (2).$$ Thus $$\int^\infty_0 \frac{\sinh x - x}{x} \cdot \frac{dx}{e^x (e^x - 1)} = 1 - \gamma - \frac{1}{2} \ln (2),$$ and is all thanks to Jack and his amazing insight!

omegadot
  • 11,736
  • I appreciate the response and explanation. Could you pleas explain how he went from his first step, however, to the second one. When he subtracted 1 from the left side, and was able to make it $\frac{1}{e^x(e^x -1)}$. – Ryan Goulden Dec 08 '17 at 03:22
  • Never mind I see it now. Thanks! – Ryan Goulden Dec 08 '17 at 03:48
1

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ The $\ds{\zeta}$-function is related to the Digamma Function $\ds{\Psi}$ by means of a Generating Function: See $\ds{\mathbf{\color{black}{6.3.15}}}$ in A & S Table. Namely, \begin{align} &\left.\sum_{n = 1}^{\infty} \bracks{\zeta\pars{2n + 1} - 1}z^{2n} \,\,\right\vert_{\ \verts{z}\ <\ 2} \\[5mm] = &\ {1 \over 2z} - {1 \over 2}\,\pi\cot\pars{\pi z} - {1 \over 1 - z^{2}} + 1 - \gamma - \Psi\pars{1 + z} \end{align} where $\ds{\gamma}$ is the Euler-Mascheroni Constant. Then, \begin{align} &\sum_{n = 1}^{\infty}{\zeta\pars{2n + 1} - 1 \over 2n + 1} \\[5mm] = &\ \int_{0}^{1}\left[{1 \over 2z} - {1 \over 2}\,\pi\cot\pars{\pi z} - {1 \over 1 - z^{2}} + 1 - \gamma\right. \\ &\ \phantom{= \int_{0}^{1}} \left.\vphantom{1 \over 2z} -\Psi\pars{1 + z}\right]\dd z \\[5mm] & = \bbx{1 - \gamma - {1 \over 2}\,\ln\pars{2}} \\ & \end{align} Similarly, \begin{align} &\sum_{n = 1}^{\infty}\bracks{\zeta\pars{2n + 1} - 1} \\[5mm] = &\ \lim_{z \to 1}\left[{1 \over 2z} - {1 \over 2}\,\pi\cot\pars{\pi z} - {1 \over 1 - z^{2}} + 1 - \gamma\right. \\[2mm] &\ \phantom{\lim_{z \to 1}\left[\right.} \left.\vphantom{1 \over 2z} -\Psi\pars{1 + z}\right] = \bbx{1 \over 4} \\ & \end{align}

Felix Marin
  • 89,464