-1

Evaluate the following sum

$$\frac {1}{1×4×7} +\frac {1}{4×7×10}+\frac {1}{7×10×13}+....\frac {1}{25×28×31}$$

How could i solve this problem?

Thanks very much for help

user373141
  • 2,503

4 Answers4

2

Hint. Try to decompose each fraction like this: $$\frac{1}{(n-3) \cdot n \cdot (n+3)} = \frac{1}{18} \left( \frac{1}{n-3} - \frac{2}{n} + \frac{1}{n+3} \right) $$

2

Hint: $$\frac { 1 }{ a\left( a+3 \right) \left( a+6 \right) } =\frac { 1 }{ 6 } \left[ \frac { 1 }{ a\left( a+3 \right) } -\frac { 1 }{ \left( a+3 \right) \left( a+6 \right) } \right] =\frac { 1 }{ 6 } \left[ \frac { 1 }{ 3 } \left( \frac { 1 }{ a } -\frac { 1 }{ a+3 } \right) -\frac { 1 }{ 3 } \left( \frac { 1 }{ a+3 } -\frac { 1 }{ a+6 } \right) \right] =\\ =\frac { 1 }{ 18 } \left[ \frac { 1 }{ a } -\frac { 2 }{ a+3 } +\frac { 1 }{ a+6 } \right] $$

haqnatural
  • 21,578
1

Partial fractions gives \begin{eqnarray*} \frac{1}{n(n+3)(n+6) } =\frac{1}{18} \left( \frac{1}{n}-\frac{2}{n+3}+\frac{1}{n+6} \right) \end{eqnarray*} so the sum does telescope \begin{eqnarray*} \frac{1}{18} \left[ \left(\frac{1}{1}-\frac{2}{4}+\frac{1}{7} \right)+ \left(\frac{1}{4}-\frac{2}{7}+\frac{1}{10} \right)+\cdots+\left(\frac{1}{22}-\frac{2}{25}+\frac{1}{28} \right)+\left(\frac{1}{25}-\frac{2}{28}+\frac{1}{31} \right)\right] \\ \frac{1}{18} \left( \frac{1}{1}- \frac{1}{4}-\frac{1}{28}+\frac{1}{31}\right)=\color{red}{\frac{9}{217}}. \end{eqnarray*}

Donald Splutterwit
  • 36,613
  • 2
  • 26
  • 73
0

One does the trick like the following:

\begin{align*} \sum_{n}\left(\dfrac{1}{n}-\dfrac{2}{n+3}+\dfrac{1}{n+6}\right)&=\sum_{n}\left(\dfrac{1}{n}-\dfrac{1}{n+1}\right)+\sum_{n}\left(\dfrac{1}{n+1}-\dfrac{1}{n+2}\right)\\ &~~~~+\sum_{n}\left(\dfrac{1}{n+2}-\dfrac{1}{n+3}\right)+\sum_{n}\left(-\dfrac{1}{n+3}+\dfrac{1}{n+4}\right)\\ &~~~~+\sum_{n}\left(\dfrac{1}{n+5}-\dfrac{1}{n+4}\right)+\sum_{n}\left(-\dfrac{1}{n+5}+\dfrac{1}{n+6}\right) \end{align*} and finally telescoping takes place.

user284331
  • 55,591