Let $a_ka_{k-1}\dots a_1a_0$ the decimal expression of number ${n}$. Prove $n$ is divisible by 43 if and only if $a_ka_{k-1}\dots a_1-30a_0$ is divisible by 43.
Proof:
Let $\boldsymbol{x=a_ka_{k-1}\dots a_1}$ and $\boldsymbol{m=x-30a_0}$ then:
\begin{split} 43|n =43 \,|\, 10x+a_0 \Leftrightarrow & 10x&+&a_0 &\equiv 0\ ( \textrm{mod 43)} \\ \Leftrightarrow & 50x&+&5a_0 &\equiv0 \ (\text{mod 43)} \\ \Leftrightarrow & 7x&+&5a_0 &\equiv0 \ (\text{mod 43)} \\ \Leftrightarrow & 42x&+&30a_0 &\equiv0 \ (\text{mod 43)} \\ \Leftrightarrow & x &-& 30a_0& \equiv0 \ (\text{mod 43)} \Leftrightarrow 43 |x-30a_0 \Leftrightarrow 43|m \end{split}
Is correct my proof ? Is there a better proof?