We can prove a much tighter inequality with elementary means. We have:
$$ \frac{1}{4^n}\binom{2n}{n}=\frac{2}{\pi}\int_{0}^{\pi/2}\left(\cos\theta\right)^{2n}\,d\theta \tag{A}$$
$$ \frac{2}{\pi}\int_{0}^{\pi/2}\left(\cos\theta\right)^{2n+1}\,d\theta = \frac{2\cdot 4^n}{(2n+1)\pi\binom{2n}{n}}\tag{B}$$
and the sequence $\{a_m\}_{m\geq 0}$ given by $a_m=\frac{2}{\pi}\int_{0}^{\pi/2}\left(\sin\theta\right)^m\,d\theta$ is midpoint-log-convex by the Cauchy-Schwarz inequality. $a_{2n-1}\cdot a_{2n+1}\geq a_{2n}^2$ implies that
$$ \frac{2\cdot 4^n}{(2n+1)\pi\binom{2n}{n}}\cdot \frac{2\cdot 4^{n-1}}{(2n-1)\pi\binom{2n-2}{n-1}}\geq \left[\frac{1}{4^n}\binom{2n}{n}\right]^2 \tag{C}$$
$$ \frac{1}{n\left(n+\tfrac{1}{2}\right)\pi^2}\geq \left[\frac{1}{4^n}\binom{2n}{n}\right]^4 \tag{D}$$
and $a_{2n}\cdot a_{2n+2}\geq a_{2n+1}^2 $ implies that:
$$ \frac{1}{4^n}\binom{2n}{n}\cdot\frac{1}{4^{n+1}}\binom{2n+2}{n+1}\geq\left[\frac{2\cdot 4^n}{(2n+1)\pi\binom{2n}{n}}\right]^2\tag{E}$$
$$ \left[\frac{1}{4^n}\binom{2n}{n}\right]^4\geq \frac{(n+1) }{\pi^2\left(n+\tfrac{1}{2}\right)^3}\tag{F}$$
hence by $(D)$ and $(F)$ we have:
$$\boxed{ \frac{1}{\sqrt{\pi}}\sqrt[4]{\frac{n+1}{\left(n+\tfrac{1}{2}\right)^3}}\leq \frac{1}{4^n}\binom{2n}{n}\leq\frac{1}{\sqrt{\pi}}\sqrt[4]{\frac{1}{n\left(n+\tfrac{1}{2}\right)}}.}\tag{G}$$