Possible Duplicate:
$\lim_{n \to +\infty} n^{\frac{1}{n}} $
Limit of the sequence $\lim_{n\rightarrow\infty}\sqrt[n]n$
I want to prove that $\lim\limits_{n\rightarrow\infty}\sqrt[n]{n}=1$
Proof: We can write $\sqrt[n]{n}=1+a_n$ and so $n=(1+a_n)^n$ with $a_n\geq0$.
So by the binomial theorem it's $n=(1+a_n)^n=\sum\limits_{k=0}^{n}{n\choose k}a_n^k>{n\choose2}a_n^2$ for all $n\geq2$ $(\ast)$
Now it's $n>{n\choose 2}a_n^2$ what is equivalent to $\frac{2}{n-1}>a_n^2$ what is $\geq0$. By taking the limit for $n\rightarrow\infty$ its $0>\lim\limits_{n\rightarrow\infty}a_n\geq0$, a contradiction.
So my question is just about the '$>$' and if this is a mistake or can you do it like this?
Appendix: Of course I could take in $(\ast)$ $n\geq1+{n\choose2}a_n^2$ and so I will get $\lim\limits_{n\rightarrow\infty}\sqrt\frac{2}{n}=0\geq\lim\limits_{n\rightarrow\infty}a_n\geq0$ and so $\lim\limits_{n\rightarrow\infty}a_n=0$ and so $\lim\limits_{n\rightarrow\infty}\sqrt[n]{n}=1+0=1$