State 2 values of $x$ for which the value of $3x^2+4x-14$ is a perfect square.
I can't seem to factor it and I'm really lost. Does using the quadratic equation for it work? Help I need it for grade 10 quadratics test.
State 2 values of $x$ for which the value of $3x^2+4x-14$ is a perfect square.
I can't seem to factor it and I'm really lost. Does using the quadratic equation for it work? Help I need it for grade 10 quadratics test.
$$(1)\quad3x^2+4x-14=a^2$$ $$\implies 3x^2+4x-(14+a^2)=0\implies x=\dfrac{-4\pm\sqrt{16-12(-14-a^2)}}{6}$$
This does not need to be an integer. This says that for $(1)$ to be true, just choose an $a$ here and it will give you an $x$ value that satisfies. For example, $a=1$: $$x=\dfrac{-4\pm\sqrt{16-12(-15)}}{6}=\dfrac{-4\pm\sqrt{196}}{6}=\frac{10}{6},-3$$ Plugging either one of these values into the original equation will give you $a=1$.
$$3x^2+4x-14=n^2\\x=\frac{-4\pm\sqrt{16+12(14+n^2)}}{6}=-\frac23\pm\frac13\sqrt{46+3n^2}$$
Setting $n=1$ gives a nice value for the square root: $7$. In this case, you get $x=-3,\frac53$ as two values of $x$ for which your quadratic gives a square number, namely $1$, as the value.
This choice of $n$ is not unique, you could have chosen any natural number. This is just the simplest one.
I AM ASSUMING THAT THE QUESTION IS ASKING FOR $x$ an integer.
I finished up. There are a two-ended sequence of positive $x$ values (integers) that work, the linear recurrence can be used in either direction, $$ x_{n+2} = 14 x_{n+1} - x_n + 8, $$ all positive are $$ ..., 8853, 635, 45,3, 5, 75, 1053, 14675,...$$ The double ended sequence of negative $x$ values is $$ ... -33043, -2373, -171, -13, -3, -21, -283, -3933, -54771,... $$ Together these are ALL integer $x$ values.
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
This becomes a Pell type equation, $$ (3x+2)^2 - 3 y^2 = 46. $$ By nature, there are answers both with positive $x$ and negative $x.$
If you prefer positive $x,$ there are two infinite sequences. One is $$ 3, 45, 635, 8853, ... $$ with $$ x_{n+2} = 14 x_{n+1} - x_n + 8. $$ For this one the results of $3x^2 + 4 x - 14$ are $y^2,$ with $y$ in $$ 5, 79, 1101, 15335,... $$ and $$ y_{n+2} = 14 y_{n+1} - y_n . $$
The other positive sequence is $$ 5, 75, 1053, 14675,... $$ also with
$$ x_{n+2} = 14 x_{n+1} - x_n + 8. $$ For this one the results of $3x^2 + 4 x - 14$ are $y^2,$ with $y$ in $$ 9, 131, 1825, 25419... $$ and $$ y_{n+2} = 14 y_{n+1} - y_n . $$
=====================================================================================
jagy@phobeusjunior:~$ ./Pell_Target_Fundamental
Automorphism matrix:
2 3
1 2
Automorphism backwards:
2 -3
-1 2
2^2 - 3 1^2 = 1
w^2 - 3 v^2 = 46
Sat Dec 2 10:20:49 PST 2017
w: 7 v: 1 SEED KEEP +-
w: 11 v: 5 SEED BACK ONE STEP 7 , -1
w: 17 v: 9
w: 37 v: 21
w: 61 v: 35
w: 137 v: 79
w: 227 v: 131
w: 511 v: 295
w: 847 v: 489
w: 1907 v: 1101
w: 3161 v: 1825
w: 7117 v: 4109
w: 11797 v: 6811
w: 26561 v: 15335
w: 44027 v: 25419
w: 99127 v: 57231
w: 164311 v: 94865
w: 369947 v: 213589
w: 613217 v: 354041
w: 1380661 v: 797125
w: 2288557 v: 1321299
w: 5152697 v: 2974911
w: 8541011 v: 4931155
w: 19230127 v: 11102519
w: 31875487 v: 18403321
Sat Dec 2 10:21:49 PST 2017
w^2 - 3 v^2 = 46
In this one I told it to show the positive $x$ when the left hand number in the line is $2 \pmod 3,$ otherwise give $x$ negative.
Sat Dec 2 15:38:39 PST 2017
7 -3 1
11 3 5
17 5 9
37 -13 21
61 -21 35
137 45 79
227 75 131
511 -171 295
847 -283 489
1907 635 1101
3161 1053 1825
7117 -2373 4109
11797 -3933 6811
26561 8853 15335
44027 14675 25419
99127 -33043 57231
164311 -54771 94865
369947 123315 213589
613217 204405 354041
1380661 -460221 797125
2288557 -762853 1321299
5152697 1717565 2974911
8541011 2847003 4931155
19230127 -6410043 11102519
31875487 -10625163 18403321
Sat Dec 2 15:39:02 PST 2017
3x^2+4x-14=0. Let q and w be 2 roots of the equation. q+w=4,qw=-42 (q-w)^2=(q+w)^2-4qw So q-w=√184=2√46 On solving q+w=4and q-w=2√46 We get w=q={4+2√46}÷\2 Now put the value of w andq and solve it.on verifying q+w is not equal with 4 . slight deviations will come as we have taken imaginary roots.