$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\int_{0}^{\infty}{\arctan\pars{x} \over x\pars{1 + x^{2}}}\,\dd x &
\,\,\,\stackrel{x\ =\ \tan\pars{\theta}}{=}\,\,\,
\int_{0}^{\pi/2}{\theta \over \tan\pars{\theta}}\,\dd\theta
\\[5mm] & =
\left.\Re\int_{\theta = 0}^{\theta = \pi/2}{-\ic\ln\pars{z} \over \bracks{\pars{z - 1/z}/2\ic}/\bracks{\pars{z + 1/z}/2}}\,{\dd z \over \ic z}
\right\vert_{\ds{\ z\ =\ \exp\pars{\ic\theta}}}
\\[5mm] & =
\left.-\,\Im\int_{\theta = 0}^{\theta = \pi/2}{\pars{1 + z^{2}}\ln\pars{z} \over 1 - z^{2}}\,{\dd z \over z}
\right\vert_{\ds{\ z\ =\ \exp\pars{\ic\theta}}}
\\[1cm] & \stackrel{\mrm{as}\ \epsilon\ \to\ 0^{+}}{\sim}\,\,\,
\Im\int_{1}^{\epsilon}{\pars{1 - y^{2}}\bracks{\ln\pars{y} + \pi\ic/2} \over 1 + y^{2}}\,{\ic\,\dd y \over \ic y}
\\[2mm] + &\
\Im\int_{\pi/2}^{0}\bracks{\ln\pars{\epsilon} +
\ic\theta}\,{\epsilon\expo{\ic\theta}\ic\,\dd\theta \over \epsilon\expo{\ic\theta}} +
\Im\int_{\epsilon}^{1}{\pars{1 + x^{2}}\ln\pars{x} \over 1 - x^{2}}
\,{\dd x \over x}
\\[1cm] & =
-\,{\pi \over 2}\int_{\epsilon}^{1}{1 - y^{2} \over 1 + y^{2}}\,{\dd y \over y} - {\pi \over 2}\,\ln\pars{\epsilon}
\\[5mm] & \stackrel{\mrm{as}\ \epsilon\ \to\ 0^{+}}{\to}\,\,\,
-\,{\pi \over 2}\int_{0}^{1}\pars{{1 - y^{2} \over 1 + y^{2}} - 1}
\,{\dd y \over y} =
\pi\int_{0}^{1}{y \over 1 + y^{2}}\,\dd y
\\[5mm] & =
\bbx{{\pi \over 2}\,\ln\pars{2}} \approx 1.0888
\end{align}