$ \lim_{n\to \infty} (a_1a_2...a_n)^{1/n} = a$ and we know that $ \lim_{n\to \infty} a_n = a$
My proof: $| (a_1a_2...a_n)^{1/n} - a| <| (a_na_n...a_n)^{1/n} - a| = | (a_n)^{n/n} - a| = | a_n - a| < \epsilon $
My question is: is this proof correct? If no, where did I do a mistake?