I was solving problems on differentiation under integral sign :
I encountered this problem : Evaluate this integral$$I=\int_0^\infty\frac{(e^{-ax}-e^{-4bx})sin(x)}{x}dx$$ and then use it to solve the integral $$I_1=\int_0^\infty\frac{(x^3e^{-2x}-x^2e^{-3x}+1)sin(x)}{x}dx$$
I evaluated the integral I , then I divided integral I1 to 3 integrals $$I_1=\int_0^\infty x^2e^{-2x}sin(x)dx+\int_0^\infty-x e^{-3x}sin(x)dx+\int_0^\infty \frac{sin(x)}{x}dx$$ I can solve the first 2 integrals (by differentiating the integral as I clarify below).. My problem is the third integral of $I_1$. How can I deduce $$\int_0^\infty \frac{\sin x}{x}dx $$ from the integral I ?
Here is my solution to evaluate I , then the first 2 parts of the integral I1: ( I know the below solution is correct .. But how to complete to evaluate the last part of I1) $$\frac{\partial I}{\partial a}=\int_0^\infty - e^{-ax} sin(x)=\frac{-1}{1+a^2}$$ $$I=\int\frac{-1}{1+a^2}da+f(b)$$ $$I=-\tan^{-1}(a)+f(b)$$ $$f(b)=\tan^{-1}(4b)$$ $$I=-\tan^{-1}(a)+\tan^{-1}(4b)$$ $$\frac{\partial^2 I}{\partial a^2}=\int_0^\infty x e^{-ax} sin(x)=\frac{d}{da}(\frac{-1}{1+a^2})=\frac{2a}{(1+a^2)^2}$$ $$\frac{\partial^3 I}{\partial a^3}=\int_0^\infty -x^2 e^{-ax} sin(x)=\frac{d}{da}(\frac{2a}{(1+a^2)^2})=\frac{-8a^3+2a^2-8a+2}{(a^2+1)^3}$$ $$\int_0^\infty x^2e^{-2x}sin(x)dx=-\frac{\partial^3 I}{\partial a^3}|_{a=2}$$ $$\int_0^\infty-x e^{-3x}sin(x)dx=-\frac{\partial^2 I}{\partial a^2}|_{a=3}$$