3

I'm a bit rusty with limits $$ \lim_{n \to \infty} \sqrt[n]{a^n+1}$$ with $a \ge 0$.

The solution in my book is $max \left \{ 0,1 \right \}$ but my final results are:

1) $+\infty$ if $0<a<1$

2) $1$ if $a>1$

3) $+\infty$ if $a=1$

Anne
  • 2,931

4 Answers4

4

The correct result is $\max\{a, 1\}$, so I suppose it's a typo or a miscopied expression. To see this, note that

  • If $a \le 1$, then $1 \le a^n + 1 \le 2$ for all $n$. Taking $n$-th roots and a limit gives limit $1$.

  • If $a > 1$, then $$\left(a^n + 1\right)^{1/n} = a \left(1 + \frac{1}{a^n}\right)^{1/n}$$ Now apply the previous case with $1/a$ to see why this tends to $a \cdot 1 = a$.


The key idea here is that if $a < 1$, the term $a^n$ is negligible once $n$ is large. If $a > 1$, the term $1$ is negligible once $n$ is large.

3
  1. By Bernoulli's inequality$, 1 \le (1+a^n)^{1/n}\leq 1+\frac{a^n}{n} \to 1$ and so the limit is $1$ if $0 \le a < 1$.

  2. If $a>1$, then $a \le \sqrt[n]{a^n+1} \le \sqrt[n]{a^n+a^n} = a \sqrt[n]{2} \to a$ and so the limit is $a$.

  3. If $a=1$, then $\sqrt[n]{a^n+1}=\sqrt[n]{2} \to 1$.

You don't really need case 3 because the other two cases work for $a=1$.

Therefore, $\displaystyle \lim_{n \to \infty} \sqrt[n]{a^n+1} = \max(a,1) $.

lhf
  • 216,483
1

1) $0<a<1:$

$1 \lt (a^n +1)^{1/n} \lt (2)^{1/n} .$

$1\le \lim_{n \rightarrow \infty} (a^n+1)^{1/n} \le $

$\lim_{ n\rightarrow \infty }2^{1/n} =1.$

2) $a>1:$

$a \lt (a^n +1)^{1/n} \lt (2a^n)^{1/n}.$

$a \le \lim_{ n \rightarrow \infty}(a^n+1)^{1/n} \le $

$\lim_{n \rightarrow \infty}(2)^{1/n}a = a.$

3)$a=1. $

Can you do it?

Peter Szilas
  • 20,344
  • 2
  • 17
  • 28
  • I'm not used to the bernoully 's inequality ...lim_n a^n=0 , does (a^n+1)^{1/n} should be 1^{1/n} – Anne Nov 27 '17 at 17:54
  • Anne. y= x^1/n is strictly increasing: means: x <y, then x^1/n < y^1/n. First line:: 1<a^n+1<(1+1) since a^n <1; now take the n-th root. The case a>1 : a^n <a^n +1 < 2a^n, since a^n>1. Now take the root. Does this make sense? – Peter Szilas Nov 27 '17 at 18:56
1

I agree with $\sqrt[n]{a^n+1}=e^{log\sqrt[n]{a^n+1} }=e^{\frac{log(a^n+1)}{n} }$

If $a>1$ $\frac{log(a^n+1)}{n}<\frac{log(a^n)}{n}=\frac{n*log(a)}{n}=log(a)$ and then $lim_n \sqrt[n]{a^n+1}=e^{log {a}}=a$

If $0<a<1$ $\frac{log(a^n+1)}{n}<\frac{log(a^n)}{n}=\frac{n*log(a)}{n}=log(a)$ and then $lim_n \sqrt[n]{a^n+1}=e^{log {a}}=a$ (but $a<1$!!!)

If $a=1$ , $\sqrt[n]{a^n+1}=\sqrt[n]{1^n+1} $and then $lim_n \sqrt[n]{1^n+1}=lim_n \sqrt[n]{2}=1$

If $a=0$ , $\sqrt[n]{a^n+1}=\sqrt[n]{1} $ and then $lim_n \sqrt[n]{1}=1$

I'm not sure about the case of $0<a<1$ because a <1 and the result is not the maximum between a and 1.

Anne
  • 2,931