I'm trying to prove the following equality regarding the limit superior:
Let $(a_n)_{n\in\mathbb{N}}$ be a convergent sequence and let $(b_n)_{n\in\mathbb{N}}$ be bounded. Then
$\limsup_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}a_n+\limsup_{n\to\infty}b_n$
I worked out some things but I'm unsure whether they are correct:
I've already prove a theorem stating that $\limsup_{n\to\infty}(a_n+b_n)\leq\limsup_{n\to\infty}a_n+\limsup_{n\to\infty}b_n$ for general $(a_n),(b_n)$. As $(a_n)$ is convergent, the $\limsup_{n\to\infty}a_n$ replaces with a $\lim_{n\to\infty}a_n$ and what remains to show is that $\limsup_{n\to\infty}(a_n+b_n)\geq\limsup_{n\to\infty}a_n+\limsup_{n\to\infty}b_n$ for a convergent $(a_n)$.
Writing the definition of the limit superior, we have that $\limsup_{n\to\infty}(a_n+b_n)=\lim_{n\to\infty}\sup\{a_n+b_n,\dots\}$. Now for this supremum expression, we have that $\sup\{a_n+b_n,\dots\}\geq\sup\{a+b_n,\dots\}$ as $(a_n)$ converges to $a$ and the sequence of suprema should be decreasing.
By the laws of the supremum, we then have $\sup\{a+b_n,\dots\}=a+\sup\{b_n,\dots\}$. Running n to infinity should yield $\lim_{n\to\infty}a+\sup\{b_n,\dots\}=a+\limsup_{n\to\infty}b_n$ and thus $\limsup_{n\to\infty}(a_n+b_n)\geq a+\limsup_{n\to\infty}b_n$.