Evaluate $$\sum^{13}_{k=1}\frac{\sin (30^\circ k +45^\circ)}{\sin(30^\circ(k-1)+45^\circ)}.$$
Put $30^\circ = \alpha, 45^\circ = \beta$. Then $$\begin{align} S:=&\sum^{13}_{k=1}\frac{\sin (\alpha k+\beta)}{\sin(\alpha(k-1)+\beta)} = \sum^{13}_{k=1}\frac{\sin(\alpha(k-1)+\beta+\alpha)}{\sin(\alpha(k-1)+\beta)}\\ &= \sum^{13}_{k=1}\frac{\sin(\alpha(k-1)+\beta)\cos \alpha+\cos(\alpha(k-1)+\beta)\sin \alpha}{\sin(\alpha(k-1)+\beta)}\\ &= \cos \alpha\sum^{13}_{k=1}1+\sin \alpha\sum^{13}_{k=1}\cot(\alpha(k-1)+\beta) \\ &= \frac{\sqrt{3}}{2}\cdot 13+\frac{1}{2}\sum^{13}_{k=1}\cot(\alpha(k-1)+\beta). \end{align} $$ Could some help me to solve it, thanks.