Let $A$ and $B$ be Hermitian matrices of the same size. If $AB − BA$ and $A − B$ commute, show that $A$ and $B$ commute.
I'm not sure where to start with this. Any help is appreciated.
Let $A$ and $B$ be Hermitian matrices of the same size. If $AB − BA$ and $A − B$ commute, show that $A$ and $B$ commute.
I'm not sure where to start with this. Any help is appreciated.
Let $C=AB-BA.$ Then for $m\geq 1$
$$C^m=C^{m-1}(AB-BA)=C^{m-1}A(B-A)+C^{m-1}(A-B)A.$$ Thus \begin{align*} \text{trace} (C^m)=& \text{trace} (C^{m-1}A(B-A))+ \text{trace} (C^{m-1}(A-B)A) \\=&-\text{trace}(A-B)C^{m-1}A + \text{trace} (C^{m-1}(A-B)A)\\ &~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (\text{as trace}(ST)=\text{trace (TS)})\\ =& - \text{trace} (C^{m-1}(A-B)A)+ \text{trace} (C^{m-1}(A-B)A)\\& ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~(\text{as}~ C(A-B)=(A-B)C))\\&=0. \end{align*} Since $\text{trace} (C^m)=0$ for all $m,$ $~C$ is nilpotent.(The link of the proof of this is given in the comment)
Also $C^*=(AB-BA)^*=(AB)^*-(BA)^*=B^*A^*-A^*B^*=BA-AB=-C.$
Thus $(iC)^*=\bar i C^*=-i(-C)=iC.$
Thus $iC$ is a Hermitian nilpotent matrix. Hence it must be $0,$ that is $C=0.$
Hence $AB=BA.$