2

Let $A$ and $B$ be Hermitian matrices of the same size. If $AB − BA$ and $A − B$ commute, show that $A$ and $B$ commute.

I'm not sure where to start with this. Any help is appreciated.

Math-Data
  • 662

1 Answers1

3

Let $C=AB-BA.$ Then for $m\geq 1$

$$C^m=C^{m-1}(AB-BA)=C^{m-1}A(B-A)+C^{m-1}(A-B)A.$$ Thus \begin{align*} \text{trace} (C^m)=& \text{trace} (C^{m-1}A(B-A))+ \text{trace} (C^{m-1}(A-B)A) \\=&-\text{trace}(A-B)C^{m-1}A + \text{trace} (C^{m-1}(A-B)A)\\ &~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (\text{as trace}(ST)=\text{trace (TS)})\\ =& - \text{trace} (C^{m-1}(A-B)A)+ \text{trace} (C^{m-1}(A-B)A)\\& ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~(\text{as}~ C(A-B)=(A-B)C))\\&=0. \end{align*} Since $\text{trace} (C^m)=0$ for all $m,$ $~C$ is nilpotent.(The link of the proof of this is given in the comment)

Also $C^*=(AB-BA)^*=(AB)^*-(BA)^*=B^*A^*-A^*B^*=BA-AB=-C.$

Thus $(iC)^*=\bar i C^*=-i(-C)=iC.$

Thus $iC$ is a Hermitian nilpotent matrix. Hence it must be $0,$ that is $C=0.$

Hence $AB=BA.$

Black-horse
  • 1,421
  • This is the link https://math.stackexchange.com/questions/159167/traces-of-all-positive-powers-of-a-matrix-are-zero-implies-it-is-nilpotent – Black-horse Nov 25 '17 at 19:18