If $\displaystyle A= \prod^{5}_{k=1}\cos \left(\frac{k\pi}{11}\right)$ and $\displaystyle B= \sum^{5}_{k=1}\cos \left(\frac{k\pi}{11}\right)$ then show that $\displaystyle A\cdot B= 2^{-6}\bigg(\csc \frac{\pi}{22}-1\bigg)$
Attempt: $\displaystyle B= \sum^{5}_{k=1}\cos \left(\frac{k\pi}{11}\right)=\cos \frac{\pi}{11}+\cos \frac{2\pi}{11}+\cos \frac{3\pi}{11}+\cos \frac{4\pi}{11}+\cos \frac{5\pi}{11}$
$\displaystyle =\frac{\sin \frac{5\pi}{22}}{\sin \frac{\pi}{22}}\bigg[\cos \bigg(\frac{\pi}{11}+4\frac{\pi}{22}\bigg)\bigg] =\frac{\sin \frac{5\pi}{22}}{\sin \frac{\pi}{22}}\bigg[\cos \frac{6\pi}{22}\bigg]=\frac{1}{2}\frac{-\sin(\frac{11\pi}{22})+\sin\frac{\pi}{11}}{\sin \frac{\pi}{22}}=\frac{1}{2}\bigg[-\csc \frac{\pi}{22}+1\bigg]$
could some help me how to solve it, thanks
\cdot
inA\cdot B
, which renders as $A\cdot B$. – CiaPan Nov 24 '17 at 19:12