Here is an approach for evaluating your two integrals that does not make use of the dilogarithmic function. We will instead make use of the following well-known result of
$$\sum^\infty_{n = 1} \frac{1}{n^2} = \frac{\pi^2}{6},$$
which is known as the Basel problem.
First consider the integral
$$I = \int^\infty_1 \frac{\ln x}{x^2 - 1} \, dx.$$
Setting $x = 1/u, dx = -1/u^2 \, du$ while for the limits of integration we have $(1,\infty) \mapsto (1,0)$. Thus
$$I = \int^1_0 \frac{\ln \left (\frac{1}{u} \right )}{\frac{1}{u^2} - 1} \frac{du}{u^2} = \int^1_0 \frac{-\ln u}{1 - u^2} \,du = \int^1_0 \frac{\ln u}{u^2 - 1}.$$
So we see
$$\int^\infty_1 \frac{\ln x}{x^2 - 1} \, dx = \int^1_0 \frac{\ln x}{x^2 - 1} \, dx.$$
Now consider the right most integral. Recognising the term $\dfrac{1}{1 - x^2}$ as the sum of a convergent geometric series, that is
$$\frac{1}{x^2 - 1} = - \frac{1}{1 - x^2} = -\sum^\infty_{n = 0} x^{2n}, \quad |x| < 1$$
the integral can be rewritten as
$$I = -\int^1_0 \ln x \sum^\infty_{n = 0} x^{2n} \, dx.$$
Interchanging the integral sign with the summation (see here for when one is exactly allowed to do this) gives
$$I = -\sum^\infty_{n = 0} \int^1_0 x^{2n} \ln x \, dx.$$
Integrating by parts gives
$$I = \sum^\infty_{n = 0} \frac{1}{2n + 1} \int^1_0 x^{2n} \, dx,$$
while integrating again gives
$$I = \sum^\infty_{n = 0} \frac{1}{(2n + 1)^2}.$$
The sum appearing above is well known and can be reduce to the Basel problem as follows:
\begin{align*}
\sum^\infty_{n = 0} \frac{1}{(2n + 1)^2} &= \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots\\
&= \left (\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots \right ) - \left (\frac{1}{2^2} + \frac{1}{4^2} + \frac{1}{6^2} + \cdots \right )\\
&= \left (\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots \right ) - \frac{1}{2^2} \left (\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots \right )\\
&= \sum^\infty_{n = 1} \frac{1}{n^2} - \frac{1}{2^2} \sum^\infty_{n = 1} \frac{1}{n^2}\\
&= \frac{3}{4} \sum^\infty_{n = 1} \frac{1}{n^2}\\
&= \frac{3}{4} \cdot \frac{\pi^2}{6}\\
&= \frac{\pi^2}{8}.
\end{align*}
Thus
$$\int^\infty_1 \frac{\ln x}{x^2 - 1} \, dx = \int^1_0 \frac{\ln x}{x^2 - 1} \, dx = \frac{\pi^2}{8}.$$