2

How do I calculate $\lim_{x \to 0}\frac{x^2 - \tan^2(x)}{x^4}$? I just need a hint, not the entirely solution. Thank you in advance!

3 Answers3

2

Since$$x^2-\tan^2(x)=x^2-\left(x+\frac{x^3}3+o(x^4)\right)^2=-\frac23x^4+o(x^5)\ldots$$


Another possibility:$$\lim_{x\to0}\frac{x^2-\tan^2x}{x^4}=\lim_{x\to0}\frac{x-\tan(x)}{x^3}\times\frac{x+\tan(x)}x.$$
1

Use the Taylor's expansion of the tangent at $0$:

$$\tan(x) = x+\frac{x^3}{3} +o(x^3)\,.$$

1

If we don't know the Taylor's expansion of the tangent then we can use the following L^Hospital.

$$\lim_{x\rightarrow0}\frac{x^2-\tan^2x}{x^4}=\lim_{x\rightarrow0}\frac{2x-2\tan{x}\cdot\frac{1}{\cos^2x}}{4x^3}=$$ $$=\lim_{x\rightarrow0}\frac{x\cos^3x-\sin{x}}{2x^3}=\lim_{x\rightarrow0}\frac{\cos^3x-3x\cos^2x\sin{x}-\cos{x}}{6x^2}=$$ $$=-\lim_{x\rightarrow0}\frac{3x\sin{x}\cos{x}+\sin^2x}{6x^2}=-\frac{3}{6}-\frac{1}{6}=-\frac{2}{3}.$$