-1

I want to examine the convergence of $(1-\frac{1}{kn})^n$ for $k\in\mathbb{N}$. My intuition is that for $k=1$, the sequence converges towards $1/e$ and for all other value for $k$, it should converge towards $0$. I'm just unsure about how to prove this.

Badam Baplan
  • 8,688
blub
  • 4,794

3 Answers3

1

$$\left(1-\frac{1}{kn}\right)^n=\left(\left(1-\frac{1}{kn}\right)^{kn}\right)^{\frac{1}{k}}\to \left(\frac{1}{e}\right)^k$$

tong_nor
  • 3,994
0

Note the well known limit $$ (1+x/n)^n\to e^x $$ for any $x\in \mathbb{R}$. Take $x=-1/k$.

operatorerror
  • 29,103
0

$\lim_{n \rightarrow \infty}^{} (1-\frac{1}{kn})^{n}_{}= \lim_{n \rightarrow \infty}^{} e^{\log(1-\frac{1}{kn})^{n}_{}}= e^{ \lim_{n \rightarrow \infty}^{} \frac{\log(1-\frac{1}{kn})}{1/n}}= e^{ \lim_{n \rightarrow 0}^{} \frac{\log(1-\frac{n}{k})}{n}} \stackrel{\text{L'Hospital's rule}}{=} e^{-\frac{1}{k}}_{}$

Sunyam
  • 261