Find the sum of the series $ \ \sum_{n=1}^{\infty} \frac{1}{n^2+l^2} \ $ , where $ \ l=constant \ $
Answer
The given series is convergent clearly .
$ \ \sum_{n=1}^{\infty} \frac{1}{n^2+l^2} \\ = \frac{1}{1^2+l^2}+\frac{1}{2^2+l^2}+......+\frac{1}{n^2+l^2}+........ \\ = \frac{1}{l} [ d \tan^{-1}(\frac{1}{l})+ d \tan^{-1}(\frac{2}{l})+........+ d \tan^{-1}(\frac{n}{l})+.....] \\ = \frac{1}{l} \lim_{n \to \infty} \sum_{k=1}^{n}[d \tan^{-1}(\frac{1}{l})+ d \tan^{-1}(\frac{2}{l})+........+ d \tan^{-1}(\frac{k}{l})] \\ = \frac{1}{l} \ d (\lim_{n \to \infty} \sum_{k=1}^{n}[ \tan^{-1}(\frac{1}{l})+ \tan^{-1}(\frac{2}{l})+........+ \tan^{-1}(\frac{k}{l})]) $
but now i can't proceed to find the sum of the series.
Help me out.