Show that the function $f$ defined by $f(x)=\sin(x-\pi/3)\sin(x+\pi/3)$ for all $x \in R $ has a minima at $x=\pi/6$ and maxima at $x=\pi/2$ and $x=-\pi/6$
My attempt: $$f'(x)=\cos(x-\pi/3)\sin(x+\pi/3)+\sin(x-\pi/3)\cos(x+\pi/3)$$ $$=\sin(2x)$$ $$f'(x)=0\Rightarrow \sin2x=0$$ $$2x=n\pi,n\in Z$$
I can't figure out how $\pi/6$ comes as a critical point too