Let us define the following function
$$f(z):=\frac{e^{iaz}}{z^4+1}$$
so
$$z_1:=e^{\pi i/4}=\frac{1}{\sqrt 2}(1+i)\Longrightarrow Res_{z=z_1}(f)=\lim (z-z_1)f(z)\stackrel{\text{L'Hospital}}=$$
$$=\lim_{z\to z_1}\frac{e^{aiz}}{4z^3}=\frac{\sqrt 2\;e^{\frac{a}{\sqrt 2}\left(-1+i\right)}}{4(-1+i)}=-\frac{1+i}{4}\cdot{e^{\frac{a}{\sqrt 2}\left(-1+i\right)}}$$
$${}$$
$$z_2=e^{3\pi i/4}=\frac{1}{\sqrt 2}\left(-1+i\right)\Longrightarrow Res_{z=z_2}(f)=\lim (z-z_2)f(z)\stackrel{\text{L'Hospital}}=$$
$$=\lim_{z\to z_2}\frac{e^{aiz}}{4z^3}=\frac{\sqrt 2\;e^{-\frac{a}{\sqrt 2}\left(1+i\right)}}{4(1+i)}=\frac{1-i}{4}\cdot{e^{-\frac{a}{\sqrt 2}\left(1+i\right)}}$$
Added upon request by OP: With a little trigonometry and using the polar expression for complex numbers, we can write, for example:
$${}$$
$$\frac{1-i}{4}\cdot{e^{-\frac{a}{\sqrt 2}\left(1+i\right)}}=\frac{\sqrt 2\,\,e^{-\frac{a}{\sqrt 2}}}{4}\left[\left(\cos\frac{\pi}{4}-i\sin\frac{\pi}{4}\right)\left(\cos\frac{a}{\sqrt 2}-i\sin\frac{a}{\sqrt 2}\right) \right]=$$
$${}$$
$$=\frac{\sqrt 2\,\,e^{-\frac{a}{\sqrt 2}}}{4}\left[\cos\left(\frac{\pi}{4}+\frac{a}{\sqrt 2}\right)-i\sin\left(\frac{\pi}{4}+\frac{a}{\sqrt 2}\right)\right]=\frac{\,\,e^{-\left[\frac{a}{\sqrt 2}+i\left(\frac{\pi}{4}+\frac{a}{\sqrt 2}\right)\right]}}{2\sqrt 2}$$
$${}$$
How simple and which of the above forms is simpler I can't say...in fact, I think they all are pretty nasty and even evil.