How to prove: $Cl_{\mathbb{R}}(\mathbb{IQ})=\mathbb{R}$ ($\mathbb{IQ}$-set of irrational numbers)?
I know how to prove: $Cl_{\mathbb{R}}(\mathbb{Q})=\mathbb{R}$ ($\ast$)
Proof of ($\ast$): Let: $r \in \mathbb{R}$ , $q \in \mathbb{Q}$, $\epsilon \in \mathbb{R}_{+}$. Then: $\exists n \in \mathbb{N}:$ $\frac{1}{10^{n}}<\epsilon$. Write $r$ in decimal expansion. Let q have the same decimal expansion up to $n-th$ place. Then: $\mid r-q\mid<\frac{1}{10^{n}}<\epsilon$. This implies: every ball $B(r,\epsilon)$ contains $q\in \mathbb{Q}$ $\square$
Thought of constructing some analogical proof, however I failed.
I would be very thankful for help.