Define the rays $R_1 = \{(t,t):t\le 0\}, R_2 = \{(t,2t):t\ge 0\}, R_3 = \{(t,t/2):t\ge0\}.$ Note that the convex hull of $R_1\cup R_2 \cup R_3$ is all of $\mathbb R^2.$
Now we can choose sequences $P_n \in R_2, Q_n \in R_3,$ both sequences $\to \infty,$ such that the polygonal path
$$\tag 1 R_1 \cup[(0,0),P_1]\cup [P_1,Q_1]\cup [Q_1,P_2]\cup [P_2,Q_2] \cup [Q_2,P_3] \cup \cdots$$
is the graph $G_f$ an increasing continuous function $f$ on $(-\infty,\infty).$
Because $(0,0),P_1,P_2,\dots \in R_2$ and $(0,0),Q_1,Q_2,\dots \in R_3,$ both $R_2,R_3$ are subsets of the convex hull of $G_f.$ So is $R_3.$ Since the convext hull of $R_1\cup R_2 \cup R_3$ is all of $\mathbb R^2,$ the same is true for the convex hull of $G_f.$