$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\int_{0}^{\infty}\int_{0}^{\infty}
\pars{\theta\expo{-\theta x}}\pars{\rho\expo{-\rho y}}\bracks{x < y}
\,\dd x\,\dd y =
\theta\rho\int_{0}^{\infty}\expo{-\rho y}\
\overbrace{\int_{0}^{y}
\expo{-\theta x}\,\dd x}^{\ds{\expo{-\theta y} - 1 \over -\theta}}\
\,\dd y
\\[5mm] = &\
\rho\int_{0}^{\infty}\bracks{\expo{-\rho y} - \expo{-\pars{\rho + \theta}y}}
\dd y =
1 - {\rho \over \rho + \theta} = \bbx{\theta \over \rho + \theta}
\end{align}