Calculate the following limit : $$\lim_{x\rightarrow 0}\frac{1-\sqrt{1+x^2}\cos x}{\tan^4(x)}$$
This is what I have tried: Using Maclaurin series for $ (1+x)^a $: $$(1+x^2)^{1/2}=1+\frac{1}{2!}x^2\quad \text{(We'll stop at order 2)}$$ Using Maclaurin series for $\cos x $: $$\cos x=1-\frac{x^2}{2!}\quad \text{(We'll stop at order 2)}$$ This leads to : $$1-\sqrt{1+x^2}\cos x=1-(1+\frac{x^2}{2})(1-\frac{x^2}{2})=\frac{x^4}{4}$$ $$\tan^4x=\left(\frac{\sin x}{\cos x}\right)^4$$ Using Maclaurin series for $\sin x $: $$\sin x=x-\frac{x^3}{3!}\quad \text{(We'll stop at order 3)}$$ $$\tan^4x=\left(\frac{\sin x}{\cos x}\right)^4 = \left(\frac{x-\frac{x^3}{3!}}{1-\frac{x^2}{2}}\right)^4$$
Thus $$\frac{1-\sqrt{1+x^2}\cos x}{\tan^4(x)}=\frac{\frac{x^4}{4}}{(\frac{x-\frac{x^3}{3!}}{1-\frac{x^2}{2}})^4}=\frac{x^4(1-\frac{x^2}{2})^4}{4(x-\frac{x^3}{3!})}=\frac{(x(1-\frac{x^2}{2}))^4}{4(x-\frac{x^3}{3!})}=\frac{1}{4}(\frac{x-\frac{x^3}{2}}{x-\frac{x^3}{3!}})=\frac{1}{4}(\frac{1-\frac{x^2}{2}}{1-\frac{x^2}{3!}}) $$
Then $$\lim_{x\rightarrow 0}\frac{1-\sqrt{1+x^2}\cos x}{\tan^4(x)}=\lim_{x\rightarrow 0}\frac{1}{4}(\frac{1-\frac{x^2}{2}}{1-\frac{x^2}{3!}})=\frac{1}{4}.$$ But my book says the solution is $\frac{1}{3}$
Where have I done wrong?
Help appreciated!