Hint:
The left-hand sides are respectively the imaginary and real parts of the partial sum of the geometric series
$$\sum_{k=0}^n\mathrm e^{ikx}=\frac{-1}{e^{ix}-1}.$$
Factor out $\;\mathrm e^{i\tfrac{(n+1)x}2}$ in the numerator,$\;\mathrm e^{i\tfrac{x}2}$ from the denominator, and use Euler's formulæ:
\begin{align}
\sum_{k=0}^n\mathrm e^{ikx}&=\frac{\mathrm e^{\tfrac{i(n+1)x}2}}{\mathrm e^{i\tfrac{x}2}}\frac{\mathrm e^{\tfrac{i(n+1)x}2}-\mathrm e^{-\tfrac{i(n+1)x}2}}{\mathrm e^{\tfrac{ix}2}-\mathrm e^{-\tfrac{ix}2}}=\mathrm e^{i\tfrac{nx}2}\frac{2i\sin\dfrac{(n+1)x}2}{2i\sin\dfrac x2}\\\
&=\Bigl(\cos\frac{nx}2+i\sin\frac{nx}2\Bigr)\frac{\sin\dfrac{(n+1)x}2}{\sin\dfrac x2}.
\end{align}