Assume $X_{1}, X_{2}, X_{3}, ...$ be pairwise independent random variables with $N(0,1)$ distribution. Prove:
$$ P \left( \limsup_{n \to \infty} \frac{X_{n}}{\sqrt{\log n}} = \sqrt{2} \right) = P \left( \liminf_{n \to \infty} \frac{X_{n}}{\sqrt{\log n}} = -\sqrt{2} \right) = 1 $$ and all points in $[-\sqrt{2}, \sqrt{2}]$ are accumulation points.
$$P \left( \limsup_{n \to \infty} \frac{X_{n}}{\sqrt{\log n}} = \sqrt{2} \right) = P \left( \bigcap_{n=1}^{\infty} \bigcup_{ m \geq n }\left{ \omega \in \Omega : \frac{X_{n}(\omega)}{\sqrt{\log n}} = \sqrt{2} \right} \right) =1$$
– mathsstudentTUD Nov 15 '17 at 11:09