First of all, usual notation is $a_n$ is the arithmetic mean and $b_n$ is geometric mean. But I will stick with your notation.
Let us show $b_n\geq a_n$ for all $n$.
\begin{equation}
b_{n+1} \geq a_{n+1} \iff \frac{b_n+a_n}{2}\geq \sqrt{b_na_n}
\iff (b_n-a_n)^2\geq 0
\end{equation}
which shows that $b_{n+1}\geq a_{n+1}$ for all $n$, and without loss of generality you can assume $b\geq a$ and say $b_n\geq a_n$ for all $n$.
Next, we show that $b_n$ is decreasing and $a_n$ is increasing.
\begin{equation}
b_{n+1} \leq b_n \iff \frac{a_n+b_n}{2} \leq b_n \iff a_n\leq b_n
\end{equation}
and
\begin{equation}
a_n \leq a_{n+1} \iff a_n \leq \sqrt{a_nb_n}\iff a_n\leq b_n
\end{equation}
both are true. Therefore;
\begin{equation}
a_n \leq a_{n+1} \leq b_{n+1} \leq b_n\label{bdd}\tag{1}
\end{equation}
Lastly, we need to show that they converge to the same limit.
\begin{equation}
0 \leq b_{n+1}-a_{n+1}\leq \frac{b_n+a_n}{2} - \sqrt{b_na_n}
= \frac{1}{2}\left(\sqrt{b_n}-\sqrt{a_n}\right)^2 =
\frac{1}{2}\frac{b_n-a_n}{\left(\sqrt{b_n}+\sqrt{a_n}\right)^2}(b_n-a_n)
\end{equation}
On noting that;
\begin{equation}
b_n-a_n \leq \left(\sqrt{b_n} + \sqrt{a_n}\right)^2
\end{equation}
We get;
\begin{equation}
b_{n+1} - a_{n+1} \leq \frac{1}{2}(b_n-a_n) \leq 2^{-n}(b-a)
\end{equation}
Hence $\lim_{n\to\infty}a_n$ and $\lim_{n\to\infty}b_n$ exists and equal.
Note: [\ref{bdd}] shows that limits exists, since they are bounded monotone sequence. Last results shows they are converging to same limit.
Let me also add my reference:
Borwein, Jonathan M., and Peter B. Borwein.
Pi and the AGM : a study in analytic number theory and computational complexity.
New York: Wiley, 1987.