Give the eigenvalues and eigen vectors of an $n\times n$ matrix $A=(a_{ij})$ where $a_{ii}=0$ and $a_{ij}=1;i\neq j$ . Is the matrix diagonalizable?
I've tested the matrix for $n=2$ and I get $x^2-1=0$ where $x_{1}=1$ and $x_{2}=-1$
for $n=3$ I get $-x^3+3x+2$ and the eigenvalues are $x_{1}=2$ and $x_{2}=-1$
and for $n=4$ I get $x^4-6x^2-8x-3$and the eigenvalues are $x_{1}=-1$ and $x_{2}=3$
I can't see any kind of pattern.