Prove that $\left(\forall x \in \mathbb{N}\right)\left(\exists y \in \>\mathbb{N}\right)\left(\underbrace{3...3}_\text{x}|\underbrace{1...1}_\text{y}\right)$ and find the smallest $y$ for each $x$.
Note: "$a|b$" means "$a$ divides $b$".
I know that for $x \in \mathbb{N}, k \in \mathbb{Z}:$
$$3|\underbrace{111}_\text{3}, 3|\underbrace{111111}_\text{6}, 3|\underbrace{1...1}_\text{9}, 3|\underbrace{1...1}_\text{3k}; \\ 33|\underbrace{111111}_\text{6}, 33|\underbrace{1...1}_\text{12}, 33|\underbrace{1...1}_\text{$3 \cdot 2 \cdot k$}; \\ \underbrace{3...3}_\text{x}|\underbrace{1...1}_\text{$3 \cdot x \cdot k$}.$$
So $y=3xk$ satisfies the conditions and the smallest $y$ equals $3x$, but how can i prove this formally?
My attempt at solution:
Edit:
I wanted to prove that $y$ must be $3lx$ and so solve both problems. But now I realized that my method does not work. Now I want to understand how to prove that $3x$ is the smallest possible y if I prove (by induction or by any other method) that there always exists $k$ for $y = 3lx$.
$$\left(\forall x \in \mathbb{N}\right)\left(\exists y \in \mathbb{N}\right)\left(\underbrace{3...3}_\text{x}|\underbrace{1...1}_\text{y}\right) \\ \iff \\ \left(\forall x \in \mathbb{N}\right)\left(\exists y \in \mathbb{N}\right)\left(\left(\exists k \in \mathbb{Z}\right)\left(\sum_{i=0}^{y-1} 10^i = 3 \cdot \sum_{i=0}^{x-1} 10^i \cdot k\right)\right)$$ By the definition of repunit (number that contains only the digit 1):$$ \sum_{i=0}^{n-1} 10^i = \dfrac{10^n-1}{9}, n \geq 1,$$ then $$\dfrac{10^y-1}{9} = 3k\cdot\dfrac{10^x-1}{9}.$$
So $\dfrac{10^y-1}{9}$ is divisible by 3 and $\dfrac{10^x-1}{9}$.
For 3:
$$\dfrac{10^y-1}{9} = 3l \\ \underbrace{1...1}_\text{$y$} = 3l \\ \underbrace{1 +\ ...\ + 1}_\text{$y$} = 3l\ (*) \\ y = 3l$$
(*): Divisibility rule for 3.
For $\dfrac{10^x-1}{9}$:
$$\dfrac{10^y-1}{9} = \dfrac{10^x-1}{9} \cdot m \\ y = xm\ (**)$$
(**): Proof: Prove that if $\frac {10^n-1}{9} | \frac {10^m-1}{9}$, then $n|m$.
So $y = lcm(3, x) = \dfrac{3x}{gcd(3,x)}$ and i stuck there. Any ideas please?
Thanks in advance.